GigaDevice Semiconductor Inc.

GD32F310C-EVAL Arm[®] Cortex[®]-M4 32-bit MCU

User Guide

Revision 1.0

(Mar. 2022)

Table of Contents

TAE	BLE OF CONTENTS	1
LIS	T OF FIGURES	3
LIS	T OF TABLES	4
1.	SUMMARY	5
2.	FUNCTION PIN ASSIGN	5
3.	GETTING STARTED	5
4.	HARDWARE LAYOUT OVERVIEW	6
4.	.1. Power supply	6
4.	.2. Boot option	6
4.	.3. LED	7
4.	.4. KEY	7
4.	.5. USART0	7
4.	.6. ADC	8
4.	.7. I2C	8
4.	.8. QSPI-FLASH	8
4.	.9. SPI-TFT LCD	9
4.	.10. IFRP	9
4.	.11. GD-Link	. 10
4.	.12. Extension	. 10
4.	.13. MCU	. 11
5.	ROUTINE USE GUIDE	. 11
5.	.1. GPIO_Running_LED	. 11
	5.1.1. DEMO purpose	11
	5.1.2. DEMO running result	11
5.	.2. GPIO_Key_Polling_mode	. 12
	5.2.1. DEMO purpose	. 12
	5.2.2. DEMO running result	. 12
5.	.3. EXTI_Key_Interrupt_mode	. 12
	5.3.1. DEMO purpose	. 12
	5.3.2. DEMO running result	. 12
5.	.4. USART_Printf	. 13
	5.4.1. DEMO purpose	. 13
	5.4.2. DEMO running result	. 13
5.	.5. USART_HyperTerminal_Interrupt	. 13
	5.5.1. DEMO purpose	. 13
	5.5.2. DEMO running result	. 13

algabetice		/ \L
5.6. US	SART_DMA	14
5.6.1.	DEMO purpose	. 14
5.6.2.	DEMO running result	. 14
5.7. AI	DC_conversion_triggered_by_timer	15
5.7.1.	DEMO purpose	. 15
5.7.2.	DEMO running result	. 15
5.8. I2	C_EEPROM	15
5.8.1.	DEMO purpose	. 15
5.8.2.	DEMO running result	. 15
5.9. Q	SPI_FLASH	16
5.9.1.	DEMO purpose	. 16
5.9.2.	DEMO running result	. 16
5.10.	SPI_TFT_LCD_Driver	17
5.10.1.	DEMO purpose	. 17
5.10.2.	DEMO running result	. 17
5.11.	RCU_Clock_Out	18
5.11.1.	DEMO purpose	. 18
5.11.2.	DEMO running result	. 18
5.12.	CTC_Calibration	19
5.12.1.	DEMO purpose	. 19
5.12.2.	DEMO running result	. 19
5.13.	PMU_sleep_wakeup	19
5.13.1.	DEMO purpose	. 19
5.13.2.	DEMO running result	. 19
5.14.	RTC_Calendar	19
5.14.1.	DEMO purpose	. 19
5.14.2.	DEMO running result	20
5.15.	IRInfrared_Transceiver	21
5.15.1.	DEMO purpose	. 21
5.15.2.	DEMO running result	. 21
5.16.	TIMER_Breath_LED	21
5.16.1.	DEMO purpose	. 21
5.16.2.	DEMO running result	. 21
6. REVIS	SION HISTORY	23

List of Figures

Figure 4-1. Schematic diagram of power supply	6
Figure 4-2. Schematic diagram of boot option	6
Figure 4-3. Schematic diagram of LED function	7
Figure 4-4. Schematic diagram of Key function	7
Figure 4-5. Schematic diagram of USART0 function	7
Figure 4-6. Schematic diagram of ADC function	8
Figure 4-7 Schematic diagram of I2C function	8
Figure 4-8. Schematic diagram of QSPI-FLASH function	8
Figure 4-9. Schematic diagram of SPI-TFT LCD function	9
Figure 4-10. Schematic diagram of IFRP function	9
Figure 4-11. Schematic diagram of GD-Link function	. 10
Figure 4-12. Schematic diagram of Extension Pin	. 10
Figure 4-13. Schematic diagram of MCU Pin	11

List of Tables

Table 2-1. Pin assignment	. 5
Table 4-1. Boot configuration	. 6
Table 6-1 Revision history	23

1. Summary

GD32F310C-EVAL evaluation board uses GD32F310C8T6 as the main controller. As a complete development platform of GD32F310 powered by Arm[®] Cortex[®]-M4 core, the board supports full range of peripherals. It uses mini-USB interface to supply 5V power. GD-Link, Reset, Boot, User button key, LED, I2C, USART, TFT-LCD, IFRP LED、IFRP Transceiver, RTC, SPI, ADC and Extension Pin are also included. This document details its hardware schematic and the relevant applications.

2. Function Pin Assign

Function	Pin	Description	
	PA8	LED1	
	PA11	LED2	
LED	PA12	LED3	
	PA15	LED4	
RESET	-	K1-Reset	
KEY	PA0	K2-Wakeup	
NE I	PC13	K3-Tamper	
п	PB4	IR_RX	
IK	PB9	IR_TX	
120	PB6	I2C0_SCL	
120	PB7	I2C0_SDA	
	PA9	RS232_TX	
USARTU	PA10	RS232_RX	
	PB13	SPI1_SCK	
	PB14	SPI1_MISO	
	PB15	SPI1_MOSI	
201	PB10	SPI1_IO2	
SFI	PB11	SPI1_IO3	
	PB12	SPIFlash_CS	
	PB0	TFT_CS	
	PB1 TFT_RESET		
ADC	PA2	ADC_IN2	

Table 2-1. Pin assignment

3. Getting started

The EVAL Board uses mini-USB connecter to get power, the hardware system power is +5.0V. A GD-Link on board is necessary in order to download and debug programs. Select the correct boot mode and then power on, the LEDPWR will turn on, which indicates that the

power supply is OK.

There are Keil version and IAR version of all projects. Keil version of the projects are created based on Keil MDK-ARM 4.74 uVision4. IAR version of the projects are created based on IAR Embedded Workbench for ARM 7.40.2. During use, the following points should be noted:

1. If you use Keil uVision4 to open the project. In order to solve the "Device Missing (s)" problem, you can install GigaDevice.GD32F3x0_DFP.3.0.0.pack.

2. If you use IAR to open the project, install IAR_GD32F3x0_ADDON_3.0.0.exe to load the associated files.

4. Hardware layout overview

4.1. **Power supply**

Figure 4-1. Schematic diagram of power supply

4.2. Boot option

Figure 4-2. Schematic diagram of boot option

Table 4-1. Boot configuration

BOOT1	BOOT0	Boot Mode
Default	2-3	User memory
Delault	1-2	System memory
Changed by ISP	1-2	SRAM memory

4.3. LED

Figure 4-3. Schematic diagram of LED function

4.4. KEY

Figure 4-4. Schematic diagram of Key function

4.5. USART0

Figure 4-5. Schematic diagram of USART0 function

4.6. ADC

Figure 4-6. Schematic diagram of ADC function

4.7. I2C

Figure 4-7 Schematic diagram of I2C function

4.8. QSPI-FLASH

Figure 4-8. Schematic diagram of QSPI-FLASH function

4.9. SPI-TFT LCD

Figure 4-9. Schematic diagram of SPI-TFT LCD function

4.10. IFRP

4.11. GD-Link

Figure 4-11. Schematic diagram of GD-Link function

4.12. Extension

4.13. MCU

Figure 4-13. Schematic diagram of MCU Pin

5. Routine use guide

5.1. GPIO_Running_LED

5.1.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO for controlling the LED.
- Learn to use SysTick to generate 1ms delay.

GD32F310C-EVAL board has four LEDs. The LED1, LED2, LED3 and LED4 are controlled by GPIO. This demo will show how to light the LEDs.

5.1.2. DEMO running result

Download the program <01_GPIO_Running_LED> to the EVAL board, four LEDs will turn on one by one from LED1 to LED4 every 200ms, and then turn off together. 200ms later, the four LEDs work like previous again.

5.2. **GPIO_Key_Polling_mode**

5.2.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY.
- Learn to use SysTick to generate 1ms delay.

GD32F310C-EVAL board has three keys and four LEDs. The three keys are Reset key, Tamper key and Wakeup key. The LED1, LED2, LED3 and LED4 are controlled by GPIO.

This demo will show how to use the Tamper key to control the LED2. When press down the Tamper Key, it will check the input value of the IO port. If the value is 0, wait for 50ms. Then check the input value of the IO port again. If the value is still 0, indicates that the button is pressed down successfully, and light the four LED2.

5.2.2. DEMO running result

Download the program <02_GPIO_Key_Polling_mode> to the EVAL board, When press down the Tamper Key, LED2 will be turned on. Press down the Tamper Key again, LED2 will be turned off.

5.3. EXTI_Key_Interrupt_mode

5.3.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO to control the LED and the KEY
- Learn to use EXTI to generate external interrupt

GD32F310C-EVAL board has three keys and four LEDs. The three keys are Reset key, Wakeup key and Tamper key. The LED1, LED2, LED3 and LED4 are controlled by GPIO.

This demo will show how to use EXTI interrupt line to control the LED2. When press down the Tamper Key, it will produce an interrupt. In the interrupt service function, the demo will toggle LED2.

5.3.2. DEMO running result

Download the program <03_EXTI_Key_Interrupt_mode> to the EVAL board, when press down the Tamper Key, LED2 will be turned on. Press down the Tamper Key again, LED2 will be turned off.

5.4. USART_Printf

5.4.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to retarget the C library printf function to the USART

5.4.2. DEMO running result

Download the program <04_USART_Printf> to the EVAL board and run. And connect the serial line to COM of EVAL board. This implementation outputs "USART printf example: please press the Tamper Key" on the hyperterminal using COM. Press the Tamper key, serial port will output "USART Printf Example". The information via a serial port output as following.

USART printf example: please press the Tamper key

USART printf example

5.5. USART_HyperTerminal_Interrupt

5.5.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

Learn to use the EVAL_COM transmit and receive interrupts to communicate with the hyperterminal

5.5.2. DEMO running result

Download the program <05_USART_HyperTerminal_Interrupt> to the EVAL board and run. And connect the serial line to COM of EVAL board. Firstly, all the LEDs are turned on and off for test. Then, the COM sends the tx_buffer array (from 0x00 to 0xFF) to the hyperterminal and waits for receiving data from the hyperterminal that you must send. The string that you have sent is stored in the rx_buffer array. The receive buffer have a BUFFER_SIZE bytes as maximum. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, LED1 and LED2 are turned on, LED3 and LED4 are turned off. Otherwise, LED1 and LED2 are turned off, LED3 and LED4 are turned on.

The information via a serial port output as following:

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F
 10
 11
 12
 13
 14
 15
 16
 17

 18
 19
 1A
 1B
 1C
 1D
 1E
 1F
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 2A
 2B
 2C
 2D
 2E
 2F

 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 3A
 3B
 3C
 3D
 3E
 3F
 40
 41
 42
 43
 44
 45
 46
 47

 48
 49
 4A
 4B
 4C
 4D
 4E
 4F
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 5A
 5B
 5C
 5D
 5E
 5F

 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 6A
 6B

5.6. USART_DMA

5.6.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to use the COM transmit and receive using DMA

5.6.2. DEMO running result

Download the program <06_USART_DMA> to the EVAL board and run. And connect the serial line to COM of EVAL board. Firstly, all the LEDs are turned on and off for test. Then, the COM sends the tx_buffer array to the hyperterminal and waits for receiving data from the hyperterminal that you must send. The string that you have sent is stored in the rx_buffer array. The receive buffer have a BUFFER_SIZE bytes as maximum. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, LED1 and LED2 are turned on, LED3 and LED4 are turned off. Otherwise, LED1 and LED2 are turned off, LED3 and LED4 are turned on.

The information via a serial port output as following:

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F
 10
 11
 12
 13
 14
 15
 16
 17

 18
 19
 1A
 1B
 1C
 1D
 1E
 1F
 20
 21
 22
 32
 24
 25
 26
 27
 28
 29
 2A
 2B
 2C
 2D
 2E
 2F

 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 3A
 3B
 3C
 3D
 3E
 3F
 40
 41
 42
 43
 44
 45
 46
 47

 48
 49
 4A
 4B
 4C
 4D
 4E
 4F
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 5A
 5B
 5C
 5D
 5E
 5F

 60
 61
 62
 63
 64
 65
 66
 66
 66
 66
 66
 66

5.7. ADC_conversion_triggered_by_timer

5.7.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use ADC to convert analog to digital
- Learn to use TIMER to generate a channel compare event
- Learn to use LCD to show the ADC converted result

TIMER0 CH0 event triggers ADC conversion, the value displayed on the LCD corresponds to the ADC analog input, and changes with it. The converted data are moved to SRAM through DMA continuously.

5.7.2. DEMO running result

Download the program <07_ADC_conversion_triggered_by_timer> to the GD32F310C-EVAL board, adjust the adjustable potentiometer knob to change the analog input. The ADC, which is triggered by TIMER0 CH0 event, will convert the analog input, and you will see the result, a voltage curve, on the LCD. The curve adjusts with the analog input.

5.8. I2C_EEPROM

5.8.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn how to use the master transmitting mode of the I2C module
- Learn how to use the master receiving mode of the I2C module
- Learn to read and write the EEPROM with the I2C interface

5.8.2. DEMO running result

Download the program <08_I2C_EEPROM> to the EVAL board and run. Connect serial cable to COM, and open the HyperTerminal to show the print message.

Firstly, the data of 256 bytes will be written to the EEPROM from the address 0x00 and printed by the serial port. Then, reading the EEPROM from address 0x00 for 256 bytes and the result will be printed. Finally, compare the data that were written to the EEPROM and the data that were read from the EEPROM. If they are the same, the serial port will output "I2C-AT24C02 test passed!" and the four LEDs lights flashing, otherwise the serial port will output "Err: data read and write aren't matching." and all the four LEDs light.

The output information via the serial port is as following.

	I2C-24C02 configured															
	The I2CO is hardware interface															
	The :	The speed is 400000														
	AT240	CO2 wa	riting	g												
	0×00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	OxOB	0x0C	OxOD	OxOE	OxOF
	0x10	0x11	0x12	0x13	0x14	0x15	0x16	0x17	0x18	0x19	0x1A	Ox1B	0x1C	Ox1D	Ox1E	Ox1F
	0x20	0x21	0x22	0x23	0x24	0x25	0x26	0x27	0x28	0x29	0x2A	0x2B	0x2C	0x2D	0x2E	0x2F
	0x30	0x31	0x32	0x33	0x34	0x35	0x36	0x37	0x38	0x39	0x3A	0x3B	0x3C	0x3D	0x3E	0x3F
	0x40	0x41	0x42	0x43	0x44	0x45	0x46	0x47	0x48	0x49	0x4A	Ox4B	0x4C	Ox4D	Ox4E	Ox4F
	0x50	0x51	0x52	0x53	0x54	0x55	0x56	0x57	0x58	0x59	0x5A	0x5B	0x5C	0x5D	0x5E	0x5F
	0x60	0x61	0x62	0x63	0x64	0x65	0x66	0x67	0x68	0x69	0x6A	Ox6B	0x6C	Ox6D	Ox6E	0x6F
	0x70	0x71	0x72	0x73	0x74	0x75	0x76	0x77	0x78	0x79	0x7A	0x7B	0x7C	0x7D	0x7E	0x7F
	0×80	0x81	0x82	0x83	0x84	0x85	0x86	0x87	0x88	0x89	0x8A	0x8B	0x8C	0x8D	0x8E	0x8F
	0x90	0x91	0x92	0x93	0x94	0x95	0x96	0x97	0x98	0x99	0x9A	0x9B	0x9C	0x9D	0x9E	0x9F
	0xA0	OxA1	0xA2	0xA3	0xA4	0xA5	0xA6	0xA7	0xA8	0xA9	0xAA	OxAB	OxAC	OxAD	OxAE	0xAF
	0xB0	OxB1	0xB2	0xB3	0xB4	0xB5	0xB6	0xB7	0xB8	0xB9	OxBA	OxBB	OxBC	OxBD	OxBE	OxBF
	0xC0	0xC1	0xC2	0xC3	0xC4	0xC5	0xC6	0xC7	0xC8	0xC9	OxCA	OxCB	OxCC	OxCD	OxCE	OxCF
	$0 \times D0$	OxD1	0xD2	0xD3	OxD4	0xD5	OxD6	$0 \times D7$	$0 \times D8$	0xD9	OxDA	OxDB	OxDC	OxDD	OxDE	OxDF
	OxEO	OxE1	0xE2	0xE3	OxE4	0xE5	OxE6	OxE7	0xE8	OxE9	OxEA	OxEB	OxEC	OxED	OxEE	OxEF
	OxFO	0xF1	0xF2	0xF3	0xF4	0xF5	0xF6	0xF7	0xF8	0xF9	OxFA	OxFB	OxFC	OxFD	OxFE	OxFF
	AT240	CO2 r	eadin;	g												
	0×00	0x01	0x02	0x03	0x04	0x05	0x06	0×07	0x08	0x09	0x0A	OxOB	0x0C	OxOD	OxOE	$0 \times 0F$
	0x10	0x11	0x12	0x13	0x14	0x15	0x16	0x17	0x18	0x19	Ox1A	Ox1B	0x1C	Ox1D	Ox1E	Ox1F
	0x20	0x21	0x22	0x23	0x24	0x25	0x26	0x27	0x28	0x29	0x2A	0x2B	0x2C	0x2D	0x2E	0x2F
	0x30	0x31	0x32	0x33	0x34	0x35	0x36	0x37	0x38	0x39	0x3A	0x3B	0x3C	0x3D	0x3E	0x3F
	0x40	0x41	0x42	0x43	0x44	0x45	0x46	0x47	0x48	0x49	0x4A	Ox4B	Ox4C	Ox4D	Ox4E	Ox4F
	0x50	0x51	0x52	0x53	0x54	0x55	0x56	0x57	0x58	0x59	0x5A	0x5B	0x5C	0x5D	0x5E	0x5F
	0x60	0x61	0x62	0x63	0x64	0x65	0x66	0x67	0x68	0x69	0x6A	Ox6B	0x6C	Ox6D	Ox6E	Ox6F
	0x70	0x71	0x72	0x73	0x74	0x75	0x76	0x77	0x78	0x79	0x7A	Ox7B	0x7C	Ox7D	Ox7E	Ox7F
	0x80	0x81	0x82	0x83	0x84	0x85	0x86	0x87	0x88	0x89	0x8A	Ox8B	0x8C	Ox8D	0x8E	0x8F
	0x90	0x91	0x92	0x93	0x94	0x95	0x96	0x97	0x98	0x99	0x9A	Ox9B	0x9C	0x9D	0x9E	0x9F
	0xAO	OxA1	0xA2	0xA3	OxA4	0xA5	OxA6	OxA7	0xA8	0xA9	OxAA	OxAB	OxAC	OxAD	OxAE	OxAF
	0xB0	OxB1	OxB2	OxB3	OxB4	OxB5	OxB6	OxB7	0xB8	OxB9	OxBA	OxBB	OxBC	OxBD	OxBE	OxBF
	OxCO	OxC1	0xC2	0xC3	0xC4	0xC5	OxC6	0xC7	0xC8	0xC9	OxCA	OxCB	OxCC	OxCD	OxCE	OxCF
	UxDO	UxD1	UxD2	OxD3	OxD4	OxD5	OxD6	OxD7	UxD8	OxD9	OxDA	OxDB	UxDC	UxDD	OxDE	OxDF
	UxEO	UxE1	UxE2	UxE3	UxE4	UxE5	UxE6	UxE7	UxE8	UxE9	UxEA	UxEB	UxEC	UxED	UxEE	UxEF
	UxFO	UxF1	UxF2	UxF3	UxF4	UxF5	UxF6	UxF7	UxF8	0xF9	UxfA	UxfB	UxFC	UxfD	UxfE	Uxff
	120-1	AT24CU	JZ tes	st pas	ssed!											
1	1															

5.9. QSPI_FLASH

5.9.1. DEMO purpose

This demo includes the following functions of GD32 MCU:

Learn to use the Quad-SPI mode of SPI unit to read and write NOR Flash with the SPI interface

5.9.2. DEMO running result

The computer serial port line connected to the COM port of development board, set the baud rate of HyperTerminal software to 115200, 8 bits data bit, 1 bit stop bit.

Download the program <09_QSPI_FLASH> to the EVAL board, the HyperTerminal software can observe the operation condition and will display the ID of the flash, 256 bytes data which are written to and read from flash. Compare the data that were written to the flash and the data that were read from the flash. If they are the same, the serial port will output "SPI-GD25Q16 Test Passed!", otherwise, the serial port will output "Err:

Data Read and Write aren't Matching.". At last, turn on and off the LEDs one by one. The following is the experimental results.

#####	*####	#####	*####	*####	*####	*####	*####	*####	*####	*####	*####	*####	*####	*####	#####
GD32F310C_EVAL System is Starting up															
GD32F	JD32F310C_EVAL Flash:64K														
GD32F	7310C	EVAL	The (CPU Un	nique	Devie	ce ID:	EFFFI	FFFF-	-FFFFI	FFF-I	FFFFI	FFF]		
GD32F	D32F310C_EVAL SPI Flash:GD25Q16 configured														
The H	the Flash_ID:0xC84015														
Write	e to '	tx_bui	ffer:												
0×00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	$0 \times 0B$	0x0C	0x0D	OxOE	0x0F
0x10	0x11	0x12	0x13	0x14	0x15	0x16	0x17	0x18	0x19	Ox1A	Ox1B	0x1C	Ox1D	Ox1E	Ox1F
0x20	0x21	0x22	0x23	0x24	0x25	0x26	0x27	0x28	0x29	0x2A	0x2B	0x2C	0x2D	0x2E	0x2F
0x30	0x31	0x32	0x33	0x34	0x35	0x36	0x37	0x38	0x39	0x3A	0x3B	0x3C	0x3D	0x3E	0x3F
0x40	0x41	0x42	0x43	0x44	0x45	0x46	0x47	0x48	0x49	0x4A	Ox4B	0x4C	Ox4D	Ox4E	0x4F
0x50	0x51	0x52	0x53	0x54	0x55	0x56	0x57	0x58	0x59	0x5A	0x5B	0x5C	0x5D	0x5E	0x5F
0x60	0x61	0x62	0x63	0x64	0x65	0x66	0x67	0x68	0x69	0x6A	Ox6B	0x6C	0x6D	Ox6E	Ox6F
0x70	0x71	0x72	0x73	0x74	0x75	0x76	0x77	0x78	0x79	0x7A	Ox7B	0x7C	Ox7D	Ox7E	$0 \times 7F$
0×80	0x81	0x82	0x83	0x84	0x85	0x86	0x87	0x88	0x89	0x8A	0x8B	0x8C	0x8D	0x8E	0x8F
0x90	0x91	0x92	0x93	0x94	0x95	0x96	0x97	0x98	0x99	0x9A	0x9B	0x9C	0x9D	0x9E	0x9F
0xA0	0xA1	0xA2	0xA3	0xA4	0xA5	0xA6	0xA7	0xA8	0xA9	0xAA	0xAB	OxAC	OxAD	0xAE	OxAF
OxBO	0xB1	0xB2	0xB3	0xB4	0xB5	0xB6	OxB7	0xB8	OxB9	OxBA	OxBB	OxBC	OxBD	OxBE	OxBF
0xC0	0xC1	0xC2	0xC3	0xC4	0xC5	0xC6	0xC7	0xC8	0xC9	0xCA	OxCB	0xCC	OxCD	OxCE	OxCF
$0 \times D0$	OxD1	0xD2	0xD3	0xD4	0xD5	0xD6	$0 \times D7$	$0 \times D8$	0xD9	OxDA	OxDB	OxDC	OxDD	OxDE	OxDF
OxEO	OxE1	0xE2	OxE3	OxE4	OxE5	OxE6	OxE7	0xE8	OxE9	OxEA	OxEB	OxEC	OxED	OxEE	OxEF
OxFO	0xF1	0xF2	0xF3	0xF4	0xF5	0xF6	$0 \times F7$	0xF8	0xF9	OxFA	OxFB	OxFC	OxFD	OxFE	OxFF
- 1	c .	,	cc .												
Kead	trom	rx_b	itter:		~ ~-	~ ~~	~ ~ ~	~ ~~	~ ~~	~ ~ .	~ ~~	~ ~~		~ ~ ~	
UxUU	UxU1	0x02	0x03	UxU4	UxU5	UxU6	UxU7	UxU8	0x09	UxUA	UxUB	UxUC	UxUD	UxUE	UxUF
Ux10	Ux11	0x12	Ux13	Ux14	Ux15	Ux16	Ux17	Ux18	0x19	UxIA	Ux1B	Ux1C	Ux1D	Ux1E	Uxlf
0x20	0x21	0x22	0x23	0x24	0x25	0x26	0x27	0x28	0x29	Ux2A	Ux2B	0x2C	Ox2D	Ux2E	Ux2F
0x30	0x31	0x32	0x33	0x34	0x35	0x36	0x37	0x38	0x39	Ux3A	Ox3B	0x3C	Ox3D	0x3E	0x3F
0x40	0x41	0x42	0x43	0x44	0x45	0x46	0x47	0x48	0x49	Ux4A	Ux4B	0x4C	Ox4D	Ux4E	Ux4F
0x50	0x51	0x52	0x53	0x54	0x55	0x56	0x57	0x58	0x59	Ux5A	Ux5B	0x5C	0x5D	Ux5E	Ux5F
0x60	0x61	0x62	0x63	0x64	0x65	0x66	0x67	0x68	0x69	Ux6A	Ux6B	0x6C	Ox6D	Ux6E	Ux6F
0x70	0x71	0x72	0x73	0x74	0x75	0x76	0x77	0x78	0x79	Ox7A	Ox7B	Ox7C	Ox7D	Ox7E	Ox7F
0x80	0x81	0x82	0x83	0x84	0x85	0x86	0x87	0x88	0x89	0x8A	0x8B	0x8C	0x8D	0x8E	0x8F
0x90	0x91	0x92	0x93	0x94	0x95	0x96	0x97	0x98	0x99	0x9A	Ox9B	0x9C	Ox9D	Ox9E	0x9F
0xA0	OxA1	0xA2	0xA3	0xA4	0xA5	0xA6	OxA7	0xA8	OxA9	0xAA	OxAB	OxAC	OxAD	OxAE	OxAF
OxBO	OxB1	0xB2	0xB3	OxB4	0xB5	OxB6	OxB7	0xB8	OxB9	OxBA	OxBB	OxBC	OxBD	OxBE	OxBF
0xC0	OxC1	0xC2	0xC3	0xC4	0xC5	0xC6	OxC7	0xC8	0xC9	OxCA	OxCB	0xCC	OxCD	OxCE	OxCF
OxDO	OxD1	0xD2	0xD3	$0 \times D4$	$0 \times D5$	$0 \times D6$	$0 \times D7$	$0 \times D8$	$0 \times D9$	OxDA	OxDB	OxDC	OxDD	OxDE	OxDF
0xE0	OxE1	0xE2	0xE3	OxE4	OxE5	OxE6	OxE7	OxE8	OxE9	OxEA	OxEB	OxEC	OxED	OxEE	OxEF
0xF0	0xF1	0xF2	0xF3	OxF4	0xF5	$0 \times F6$	$0 \times F7$	$0 \times F8$	$0 \times F9$	OxFA	OxFB	OxFC	OxFD	OxFE	OxFF
SPI-(GD25Q:	16 Tes	st Pas	ssed!											

5.10. SPI_TFT_LCD_Driver

5.10.1. DEMO purpose

This Demo includes the following function of GD32 MCU:

Learn how to use SPI to drive TFT LCD screen and display

GD32F310C-EVAL board has a TFT LCD screen which supports SPI interface. In this demo, tests of font, number, draw and color are displayed on the LCD screen respectively.

5.10.2. DEMO running result

Download the program <10_SPI_TFT_LCD_Driver> to the EVAL board. All the LEDs are

turned on and then turned off for test. After that, the LCD screen on the board will display the GUI tests in infinite loop.

5.11. RCU_Clock_Out

5.11.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to use EXTI to generate external interrupt
- Learn to use the clock output function of RCU
- Learn to communicate with PC by USART

5.11.2. DEMO running result

Download the program <11_RCU_Clock_Out> to the EVAL board and run. Connect serial cable to EVAL_COM, open the HyperTerminal. When the program is running, HyperTerminal will display the initial information. Then user can choose the type of the output clock by pressing the Tamper button. After pressing, the LED will be lit in turn and HyperTerminal will display which mode be selected. The frequency of the output clock can be observed through the oscilloscope by PA8 pin. Information via a serial port output as following:

/ Gigadevice Clock output Demo // press tamper key to select clock output source CK_OUT: IRC28M, DIV:1 CK_OUT: LXTAL, DIV:1 CK_OUT: CKSYS, DIV:4 CK_OUT: IRC8M, DIV:1 CK_OUT: HXTAL, DIV:1

5.12. CTC_Calibration

5.12.1. DEMO purpose

This demo includes the following functions of GD32 MCU:

- Learn to use external low speed crystal oscillator (LXTAL) to implement the CTC calibration function
- Learn to use clock trim controller (CTC) to trim internal 48MHz RC oscillator (IRC48M) clock

The CTC unit trim the frequency of the IRC48M based on an external accurate reference signal source. It can automaticly adjust the trim value to provide a precise IRC48M clock.

5.12.2. DEMO running result

Download the program <12_CTC_Calibration> to the EVAL board and run. The LED1 will turn on if the internal 48MHz RC oscillator (IRC48M) clock trim is OK.

5.13. PMU_sleep_wakeup

5.13.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

■ Learn to use the USART receive interrupt to wake up the PMU from sleep mode

5.13.2. DEMO running result

Download the program <13_PMU_sleep_wakeup> to the EVAL board, connect serial cable to EVAL_COM. After power-on, all the LEDs are off. The MCU will enter sleep mode and the software stop running. When the USART0 receives a byte of data from the HyperTerminal, the MCU will wake up from a receive interrupt. And all the LEDs will flash together.

5.14. RTC_Calendar

5.14.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use RTC module to implement calendar function
- Learn to use USART module to implement time display

5.14.2. DEMO running result

Download the program <14_RTC_Calendar> to the EVAL board and run. If the development board run the program for the first time, serial port output following information "Configure RTC time" It requires the user to set up hours, minutes and seconds.

Configure RTC Time=	
please input hour:	

According to the serial port output information prompt, setting time, as shown below, serial port output following information.

If the development board is not the first run of the program, time has been set up in the last run, after the system reset, as shown below, serial port output following information " No need to configured RTC....", serial port continue printing time information.

5.15. IRInfrared_Transceiver

5.15.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use general timer output PWM wave
- Learn to use general timer generated update interrupt
- Learn to use general timer capture interrupt
- Learn to use general timer TIMER15 and TIMER16 implement Infrared function

5.15.2. DEMO running result

Download the program <15_IRInfrared_Transceiver> to the EVAL board and run. When the program is running, if the infrared receiver received data is correct, LED1, LED2, LED3, LED4 light in turn, otherwise LED1, LED2, LED3, LED4 toggle together.

5.16. TIMER_Breath_LED

5.16.1. DEMO purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use TIMER output PWM wave
- Learn to update channel value

5.16.2. DEMO running result

Download the program <16_TIMER_Breath_LED> to the GD32F310C-EVAL board and run. PA8 should not be reused by other peripherals.

When the program is running, you can see LED1 lighting from dark to bright gradually and then gradually darken, ad infinitum, just like breathing as rhythm.

6. Revision history

Table 6-1 Revision history

Revision No.	Description	Date
1.0	Initial Release	Mar.06, 2022

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2022 GigaDevice - All rights reserved