SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz One-Port SAW Resonator For Wireless Remote Control

Approved by:
Checked by:
Issued by:

SPECIFICATION

MODEL: 6AW3433920M0TO3975005

深圳市晶科鑫实业有限公司 SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD.

Add: RM#1805, East Wing, TianAn Hi-tech Plaza Phase2, TianAn Cyber Park Shenzhen, China

Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499

E-mail: jolly@q-crystal.com HTTP://www.q-crystal.com

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz One-Port SAW Resonator For Wireless Remote Control

The HPR433A is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile TO-39 case.

It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 433.920 MHz.

1. Package Dimension (TO-39)

Pin	Connection		
1	Terminal1		
2	Terminal2		
3	Case Ground		

Dimensions	Data (unit: mm)
Α	9.30±0.20
В	5.08±0.10
С	3.40±0.20
D	3±0.20 5±0.20
Е	0.45±0.20

2. Marking

HP R433A

Color: Black or Blue

3. Equivalent LC Model and Test Circuit

4. Typical Application Circuit

1) Typical Low-Power Transmitter Application

2) Typical Local Oscillator Application

Add: RM#1805, East Wing, Tian An Hi-tech Plaza Phase 2, Tian An Cyber Park Shenzhen, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499

E-mail: jolly@q-crystal.com HTTP://www.q-crystal.com

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz One-Port SAW Resonator For Wireless Remote Control

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Add: RM#1805, East Wing, Tian An Hi-tech Plaza Phase 2, Tian An Cyber Park Shenzhen, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499

E-mail: <u>jolly@q-crystal.com</u> HTTP://<u>www.q-crystal.com</u>

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz One-Port SAW Resonator For Wireless Remote Control

7. Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-40 to +85	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920 MHz	Δ f _C		± 75		kHz
Insertion Loss		ΙL		1.5	1.8	dB
Quality Factor	Unloaded Q	Q_U		11274		
	50 Ω Loaded Q	Q_L		1800		
Temperature Stability	Tumover Temperature	T _O	25	40	55	$^{\circ}$
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/℃
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	23	Ω
	Motional Inductance	L _M		78.605		μH
	Motional Capacitance	См		1.7132		fF
	Pin 1 to Pin 2 Static Capacitance	Co		1.9		pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling! NOTES:

1. Frequency aging is the change in fc with time and is specified at +65 $^{\circ}$ Cor less. Aging may exceed the specification

for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years. 2. The center frequency, f_C , is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test

system with VSWR \leq 1.2 : 1. Typically, foscillator or ftransmitter is less than the resonator fc.

- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufäcturer.
- Unless noted otherwise , case temperature T_{C} =+25°C \pm 2°C.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.

- 6 . Derived mathematically from one or more of the following directly measured parameters: fc, IL, 3 dB bandwidth, fc versus T_C , and C_0 .

 7. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f=f_0$ [1 FTC(T_0 - T_c)]. Typically, oscillator T_0 is 20° C less than the specified resonator T_0 .
 - 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the measured static (nonmotional) capacitance between either pin 1 and ground
- or pin 2 and ground .The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to Co.

Add: RM#1805, East Wing, TianAn Hi-tech Plaza Phase2, TianAn Cyber Park Shenzhen, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499

E-mail: jolly@g-crystal.com HTTP://www.g-crystal.com